Intel Pentium III на ядре Katmai

Обсуждение старого железа. Разгон, настройка и решение проблем с железом, снятым с производства и продажи.

Модераторы: Celeron, vk6666

Ответить
Аватара пользователя
Celeron
*AMD OverClan*
Сообщения: 2743
Зарегистрирован: 01 фев 2010, 22:07
Конфигурация Компьютера:: Мои старенькие системки. Все трудятся, каждая имеет свои функции.
1. Система любимая, критике не подлежащая, она же сервер интернета:
Intel Сonfidential Tualatin 1200 Mhz@1500 MHz
(выпущен в 2000 году, ранее официального релиза процессоров на ядре Tualatin, определяется как Целерон) - на основании вышеизложенного в быту зовется ПЕНТОЦЕЛЕР.
MB - Asus-TUSL-2C
VA - NVidia GeForce 6600
RAM - 512 Mb (2x256 PC-133 Hynix)
HD 80 Gb Seagate Barracuda IDE + 80 GB WD + 500 Gb WD Caviar Blue SATA через PCI-контроллер.
Кулер от сокет А медный, как зовут - фих его знает)))
БП - FSP 600 W.
2. AMD Athlon-64 2800+ 1800 ака 2430 Mhz New Castle
MB AsRock K8A780LM
2x512 Mb DDR SDRAM Kingstone
VC NVidia GeForce 8600 GT Zotac 512 Mb
HD 40 Gb Samsung+80 Gb Seagate
Cooler Zalman 9500.
3. AMD Opteron-146 2000@2800 Mhz
MB AsRock 939A78GMH\128M
2x1 Gb DDR Kingstone
VA - NVidia GeForce 8800 GT 512 Mb
HD 320 Gb WD
Cooler Залман 9700.
4. AMD Phenom II X2@X4@X1 BE 550 (сейчас залочен до 1 ядра) 3100@3900 MHz
MSI 770 C-45
2x 2GB DDR-3 Hynix 1389,8 MHz
AMD Radeon 5750 1 Mb
Thermaltake BigTyphoon
БП: Cheaftec 600 W
5. Intel Celeron Mendocino 366@550 MHz
Zida Tomato ZX440
128 (2x64) Mb PC-100 SDRAM
Riva TNT-2
HD Fudjitsu 10 Gb.
6. AMD Athlon Thunderbird 800 MHz
Aristo KT133
128 Mb PC-133 SDRAM
NVidia GeForce 2 Ti
HD - WD 20 Gb.
7. Intel Pentium-III Coppermine 800EB@900 MHz
DFI CS32TC\TL.
256 Mb PC-133 SDRAM
GeForce FX5200
HD 20 Gb Quantum Fireball.
Откуда: Из чудо-сервера на АМД энд Интел

Intel Pentium III на ядре Katmai

Сообщение Celeron »

Следующий процессор, который должна представить публике корпорация Intel - это Katmai. Этот процессор нацелен на применение в компьютерах ценой порядка $2000, а значит, велика вероятность того, что кристалл окажется в нашей домашней или рабочей машине. На прошедшем недавно Microprocessor Forum стали известны некоторые подробности этой новой архитектуры. Сегодня наш рассказ пойдет о ней.
Процессор

Процессор Pentium II, основанный на ядре Katmai будет запущен в производство в начале 1999 года. Будет выпущено сразу две версии, предназначенные для установки в Slot 1, - с частотами 450 и 500 МГц. При производстве этих процессоров будет использован уже применяемый в настоящее время технологический процесс 0.25 мкм. Как и Deschutes, Katmai будет изначально работать со 100-мегагерцовой системной шиной и содержать L2-кэш объемом 512 Кбайт, функционирующий на половинной частоте ядра. Но, в отличие от своего предшественника, объем кэша первого уровня будет удвоен и достигнет 64 Кбайт, благодаря чему ожидается увеличение производительности кристалла на 5-10%.


В дальнейшем, ко второй половине 1999 года ожидается выпуск версии Katmai с частотой 533 МГц, выполненной по технологии 0.18 мкм и использующей новую системную шину 133 МГц. Эта внешняя частота будет поддерживаться в новом чипсете i440JX "Camino", который ориентирован на применение в системе оперативной памяти RAMBUS, поддержку AGP 4x mode и ATA-66. В старших моделях Katmai объем L2-кэша будет достигать 1 или даже 2 Мбайт.

Также Katmai можно будет использовать в уже имеющихся Slot-1 материнских платах на чипсете i440BX, но после перепрошивки BIOS.

Цена младшей 450-мегагерцовой модели на начальном этапе составит порядка $600.

Для более дешевых систем предусматривается создание своего рода Celeron-процессора на ядре Katmai, но с кэш-памятью второго уровня, также работающей на половинной частоте процессора, объемом 192 или 256 Кбайт. Возможно, L2-кэш в этой модели будет интегрирован в ядро, как у Mendocino. Есть мнение, что в этом кэше будет использована SDRAM, однако, есть серьезные сомнения в возможности ее работы на таких частотах.

В процессоре Katmai, Intel, кроме наращивания частот, увеличения объема кэша и применения нового технологического процесса, коснулся и изменения архитектуры. Основными нововведениями в Katmai, помимо уже применяемых в существующих Pentium II-процессорах динамического исполнения, специфичной шины P6 и технологии MMX, будут являться конкурентная архитектра SIMD-FP с набором команд KNI, новые инструкции MMX и поточная архитектура работы с системной памятью. Рассмотрим все по порядку.
KNI

Ключевым новшеством в архитектуре Katmai является добавление 70 новых команд процессора для работы с трехмерной графикой. Как и в 3DNow!, все эти команды предназначены для работы с числами одинарной точности с плавающей точкой (32-битные вещественные). Этот набор команд, названный KNI (Katmai New Instructions), как и MMX, является SIMD-инструкциями (Single Instruction Multiple Data), что наиболее соответствует потребностям 3D-обработки. Это означает, что одной такой операцией процессор может обработать несколько (пар) данных. Идея SIMD уже была использована AMD в процессоре K6-2, однако то, что предлагает Intel, отличается от технологии конкурента.

KNI оперируют с восемью новыми регистрами процессора, представляя собой еще один модуль, типа арифметического сопроцессора, названный SIMD-FP. Регистры SIMD-FP являются 128-битными и позволяют хранить в себе одновременно 4 числа с плавающей точкой одинарной точности. Таким образом, оперируя с двумя такими регистрами, возможно выполнить операцию одновременно над четырьмя парами аргументов. Эта идея позволяет достичь пиковой производительности одного конвейера SIMD-FP до 2 GFLOP/с при частоте ядра 500 МГц. Пока не ясно, сколько параллельных конвейеров будет содержать Katmai - 1 или 2, то есть в последнем случае пиковая производительность сможет достигнуть 4 GFLOP/с. Следует заметить, что пиковая производительность модуля 3DNow!, имеющего два конвейера и 8 64-битных регистров - 2 GFLOP/c.


Для работы с новыми регистрами, названными XMM0-XMM7, Intel ввел в Katmai дополнительный режим процессора (вспомним введенный 10 лет назад protected mode). Этот режим позволяет использовать SIMD-FP одновременно с MMX или арифметическим сопроцессором, так как они используют разные регистры. Как известно, именно по причине общих регистров, MMX одновременно с FP-сопроцессором работать не могут. Кстати, и модуль 3DNow! работает только отдельно от MMX и сопроцессора.

Однако, для использования нового режима, как и для поддержки KNI вообще, требуется поддержка со стороны операционной системы. Например, при переключении задач, система должна сохранять состояния регистров XMM0-XMM7. Хотя DirectX 6.0 и не поддерживает KNI, в отличие от 3DNow!, существует патч ядра Windows 98 для сохранения регистров SIMD-FP, а Windows NT 5.0 поддерживает KNI по умолчанию.

С 128-битными регистрами SIMD-FP оперируют новые инструкции KNI. Сказать что-то об их реализации сейчас нельзя, однако их набор содержит загрузку, запись, сложение, умножение, логические операции, модуль, квадратный корень и.т.п. То есть их набор похож на набор инструкций 3DNow!, но будет ли он быстрее, зависит от его реализации, а это станет понятно позже. Синтаксис инструкций KNI во многом повторяет на инструкции MMX. Также, учитывая то, что Microsoft уже предлагает библиотеки для их поддержки в своих компиляторах, KNI-инструкции быстро получат широкое распространение в среде разработчиков программного обеспечения.

KNI может использоваться не только в приложениях, связанных с 3D-графикой, но и в других задачах, требующих активных вычислений с плавающей точкой и не требующих большой точности. Например, распознавание речи, моделирование, объемный синтез звука, MPEG-кодирование и декодирование и т.д.

Тем не менее, несмотря на все свои преимущества, KNI вскрывает и многие недостатки архитектуры x86. А именно - аппаратное ограничение в 8 регистров приводит к тому, что некоторые приложения цифровой обработки сигналов не смогут быть оптимизированы под эту архитектуру. К тому же все операции в x86 - бинарные, а уже сейчас есть необходимость в вычислении функций типа скалярного произведения векторов, реализуемых в современных и дорогих графических процессорах. То есть, развитие KNI лежит, скорее всего, за пределами x86-архитектуры.
MMX

В стандартный модуль MMX процессора Katmai также внесено несколько дополнительных инструкций. В основном, они нацелены на облегчение задач распознавания речи и кодирования-декодирования видеосигнала. В их числе - сумма абсолютных значений разностей, вычисление среднего значения с округлением в меньшую сторону, нахождение минимума и максимума. Вот только на быструю поддержку этих команд девелоперами рассчитывать не приходится - MMX и так очень медленно двигается в жизнь, да еще и соответствующий инструментарий, использующий новые команды отсутствует.
Работа с памятью

Процессор Katmai также содержит усовершенствования шины P6 для поточного доступа к памяти.


Новый механизм предсказаний позволяет уменьшать задержки при последовательном доступе к памяти и исключает "забивание" кэша данными, которые используются однократно. Кроме того он определяет в какой из кэшей - в L1, во все или во все кроме L1 должны быть записаны данные для увеличения полосы пропускания. Новый мханизм может позволить обработку до восьми одновременных независимых запросов.


По обещаниям Intel, эти усовершенствования позволят поднять производительность еще на 5-20%, особенно при кодировании и декодировании MPEG-2.
Выводы

Intel подготовил достойный ответ AMD 3DNow!. Единственное, на что может уповать AMD в сложившихся условиях, так это на низкую цену своих процессоров. Очевидно, что проблем у Intel как с внедрением MMX уже не будет. Почва для KNI уже подготовлена. Разработчики программного обеспечения уже получили инструментарий для использования KNI и процессоры для тестирования. К моменту выхода Katmai, его возможности будут использоваться многими приложениями. А у AMD проблемы возникнут несколько позднее, когда придется встраивать KNI в свое ядро.

Выпуская 3DNow!, AMD сделал достойный ответ на интеловский MMX. Будем надеяться, что этот шаг Intel - KNI - окажется таким же сильным.

Процессор Intel Pentium III 500 МГц

Intel Pentium III:


чип, произведенный по технологии 0.25 мкм;

ядро Katmai, представляющее собой Deschutes плюс модуль SSE;

работает в Slot-1-системных платах, но требует обновления BIOS;

L1-кэш - 32Кбайта (16 - на данные, 16 - на инструкции);L2-кэш - 512Кбайт. Расположен вне процессорного ядра, но в

процессорном картридже, иработает на половинной частоте ядра;

процессорный картридж SECC2;

один конвейер SSE, работающий с набором из 70 инструкций, оперирующих четырьмя парами вещественных чисел одинарной точности одновременно;

напряжение 2В;

частоты - 450 и 500 МГц (системная шина - 100 МГц);

SSE поддерживается DirectX 6.1 и выше.


Практическое функционирование процессора Intel Pentium III.

Во-первых, необходимо иметь в виду, что для запуска системы на новом процессоре новая системная плата не требуется. Нужна обновленная версия BIOS, которую, предложили уже практически все производители системных плат. BIOS должен уметь правильно распознавать новое ядро и иметь соответствующий микрокод. Что касается напряжения питания Pentium III, то, вопреки всем ожиданиям, оно пока оказалось старым - 2 Вольта. Однако для поддержки будущих моделей Pentium III все же необходима материнская плата с питанием от 1.8 В - именно такое напряжение вскорости будут требовать эти процессоры. Новый процессор, как и все предыдущие Pentium II, работает на частоте системной шины 100 МГц. Умножение у него зафиксировано, поэтому разгон возможен только повышением частоты FSB.

Процессорный картридж - SECC2.

SECC2 - некое промежуточное звено между стандартным SECC и его полным отсутствием. SECC2-картридж лишился своей передней половинки, той самой, на которую навешивается кулер. В этом есть и еще один плюс. Теперь радиатор, обдуваемый вентилятором, соприкасается не с железной пластиной, прижатой к ядру, а непосредственно с микросхемой. Таким образом, отвод тепла в SECC2 поставлен лучше. Косвенным доказательством этого явился тот факт, что предоставленный нам образец Pentium III оборудован только игольчатым радиатором без вентилятора. При этом он нормально функционировал не только на штатной частоте 500 МГц, но и будучи разогнанным до 560 МГц (5х112 МГц).

Но и это еще не все. Вместо старого покрытия кристалла Plastic Land Grid Array (PLGA) теперь используется новый органический сплав на основе меди - Organic Land Grid Array (OLGA). Таким образом, и само ядро нового процессора обрело другое лицо. Результатом этого явилось его уменьшение, с одной стороны, и улучшение охлаждения за счет лучшей теплопроводности, с другой. Так выглядит теперь Pentium III без корпуса:


Номер

Вторым нововведением, наделавшим, явилось присваивание каждому процессору Pentium III серийного номера - уникального идентификатора. Любой процессор можно было однозначно идентифицировать, а следовательно, легко решить проблемы с аутентификацией пользователей и защитой процессоров от разгона. Благодаря специальному программному обеспечению этот номер также мог бы быть получен удаленно, через интернет.

19 октября 1998 года
*AMD OverClan*
Милосердие шушпанчиков не знает пощады (с)"Шушпанишады".
Как леший, сижу на Пеньке.
Целерон: мал проц, да шустр и беспощаден.
Шушпасен шушпанчик, шуШтро шушпальцами шушпающий (с)"Шушпанишады".
Если шушпанчика назвать модератором, он не обидится, в отличие от модератора, которого назвали шушпанчиком (с) Celeron.
За Российский Крым!
Аватара пользователя
Celeron
*AMD OverClan*
Сообщения: 2743
Зарегистрирован: 01 фев 2010, 22:07
Конфигурация Компьютера:: Мои старенькие системки. Все трудятся, каждая имеет свои функции.
1. Система любимая, критике не подлежащая, она же сервер интернета:
Intel Сonfidential Tualatin 1200 Mhz@1500 MHz
(выпущен в 2000 году, ранее официального релиза процессоров на ядре Tualatin, определяется как Целерон) - на основании вышеизложенного в быту зовется ПЕНТОЦЕЛЕР.
MB - Asus-TUSL-2C
VA - NVidia GeForce 6600
RAM - 512 Mb (2x256 PC-133 Hynix)
HD 80 Gb Seagate Barracuda IDE + 80 GB WD + 500 Gb WD Caviar Blue SATA через PCI-контроллер.
Кулер от сокет А медный, как зовут - фих его знает)))
БП - FSP 600 W.
2. AMD Athlon-64 2800+ 1800 ака 2430 Mhz New Castle
MB AsRock K8A780LM
2x512 Mb DDR SDRAM Kingstone
VC NVidia GeForce 8600 GT Zotac 512 Mb
HD 40 Gb Samsung+80 Gb Seagate
Cooler Zalman 9500.
3. AMD Opteron-146 2000@2800 Mhz
MB AsRock 939A78GMH\128M
2x1 Gb DDR Kingstone
VA - NVidia GeForce 8800 GT 512 Mb
HD 320 Gb WD
Cooler Залман 9700.
4. AMD Phenom II X2@X4@X1 BE 550 (сейчас залочен до 1 ядра) 3100@3900 MHz
MSI 770 C-45
2x 2GB DDR-3 Hynix 1389,8 MHz
AMD Radeon 5750 1 Mb
Thermaltake BigTyphoon
БП: Cheaftec 600 W
5. Intel Celeron Mendocino 366@550 MHz
Zida Tomato ZX440
128 (2x64) Mb PC-100 SDRAM
Riva TNT-2
HD Fudjitsu 10 Gb.
6. AMD Athlon Thunderbird 800 MHz
Aristo KT133
128 Mb PC-133 SDRAM
NVidia GeForce 2 Ti
HD - WD 20 Gb.
7. Intel Pentium-III Coppermine 800EB@900 MHz
DFI CS32TC\TL.
256 Mb PC-133 SDRAM
GeForce FX5200
HD 20 Gb Quantum Fireball.
Откуда: Из чудо-сервера на АМД энд Интел

Re: Intel Pentium III на ядре Katmai

Сообщение Celeron »

[url=http://www.ixbt.com/cpu/pentiumiii.html]Обзор процессора Intel Pentium III 500 МГц[/url]

Все мы непрерывно считали дни до конца февраля. Как раз на этот срок был запланирован выход новых процессоров Intel Pentium III и AMD K6-III от двух ведущих производителей. Мы ждали очередной битвы гигантов за место в нашем компьютере. Этот интерес подогревался всяческими рекламными ходами, предпринимаемыми то одной компанией, то другой. И вот, на дворе уже март, а чувства удовлетворения от просмотра битвы :) как не было, так и нет. AMD анонсировал продукт, который, по существу, еще не продается, поэтому мы можем реально купить в настоящий момент только Intel Pentium III. Но и здесь наши надежды оказались несколько омрачены действительностью.

Что же такое должно было быть Pentium III? Еще полгода назад мы представляли себе Katmai, а именно так звучало кодовое имя Pentium III, как Pentium II с 64 Кбайтами L1-кэша, работающий на частоте системной шины 133 МГц и вовсю использующий AGP 4x посредством нового чипсета Camino, а также усиленный набором из 70 новых SIMD-инструкций, позволяющих сильно ускорить как 3D-графику, так и многие другие приложения, связанные с обработкой изображений или речи.

Что же мы получили? Не вдаваясь в детали, фактически за маской Pentium III сейчас скрывается давно повсеместно используемый Pentium II, но дополненный новыми SIMD-инструкциями. И это все. Много это или мало, попробуем разобраться. Итак, Intel Pentium III:
чип, произведенный по технологии 0.25 мкм;
ядро Katmai, представляющее собой Deschutes плюс модуль SSE;
работает в Slot-1-системных платах, но требует обновления BIOS;
L1-кэш - 32Кбайта (16 - на данные, 16 - на инструкции);
L2-кэш - 512Кбайт. Расположен вне процессорного ядра, но в процессорном картридже, и работает на половинной частоте ядра;
процессорный картридж SECC2;
один конвейер SSE, работающий с набором из 70 инструкций, оперирующих четырьмя парами вещественных чисел одинарной точности одновременно;
напряжение 2В;
частоты - 450 и 500 МГц (системная шина - 100 МГц);
SSE поддерживается DirectX 6.1 и выше.

На самом деле, говорить что в ядре Katmai, кроме SSE, никаких изменений не произошло, не совсем верно. Даже если закрыть глаза на появление уникального номера процессора, необходимо все же добавить, что набор команд MMX в Pentium III расширен еще парой команд, а также усовершенствован механизм потокового доступа к памяти. Однако эти изменения не дают никаких особых преимуществ в производительности, а носят скорее косметический характер. Подробно о всех технологиях, примененных в Katmai, можно прочитать в нашей старой статье на эту тему.

Мы же озаботимся вопросом практического функционирования процессора Intel Pentium III. Во-первых, необходимо иметь в виду, что для запуска системы на новом процессоре новая системная плата не требуется. Нужна всего-навсего обновленная версия BIOS, которую, к слову сказать, предложили уже практически все производители системных плат. BIOS должен уметь правильно распознавать новое ядро и иметь соответствующий микрокод. Что касается напряжения питания Pentium III, то, вопреки всем ожиданиям, оно пока оказалось старым - 2 Вольта. Однако для поддержки будущих моделей Pentium III все же необходима материнская плата с питанием от 1.8 В - именно такое напряжение вскорости будут требовать эти процессоры.

Новый процессор, как и все предыдущие Pentium II, работает на частоте системной шины 100 МГц. Умножение у него по старой доброй традиции зафиксировано, поэтому разгон возможен только повышением частоты FSB.
Производительность

Теперь о тестах. Нами было исследовано быстродействие процессора Intel Pentium III 500 МГц во всех стандартных приложениях. Так как в основном ядре Katmai по сравнению c Deschutes практически никаких изменений нет, то и по скорости Pentium III 500 работает в неспециальных задачах примерно так же, как работал бы Pentium II 500.

В составе тестовой системы использовались следующие комплектующие:
процессоры Intel Pentium III 500, Intel Pentium II 450 МГц и Intel Celeron 300A;
системная плата Chaintech 6BTM, BIOS версии 225;
видеокарта ASUS V3400TNT (на чипсете Nvidia Riva TNT) с драйверами Detonator;
звуковая карта на чипе Ensoniq ES1370;
жесткий диск IBM Titan DTTA 371010;
128 Мбайт SEC PC-100 SDRAM;
операционная система Windows98;
во всех 3D-тестах было установлено разрешение 800x600x16.

Результаты:


Как видно, Pentium III в обычных офисных приложениях не дает никакого преимущества, если не брать в расчет дополнительные 50 МГц. А если учесть, что при работе в Word или Exсel, обычно приложение ждет ввода пользователя, а не наоборот, то смысла в применении такого мощного процессора здесь нет никакого.


По этому тесту, хоть он и не использует новых SIMD-инструкций, Pentium III работает чуть быстрее Pentium II. Видимо, это происходит как раз благодаря усовершенствованному поточному доступу к памяти.


Арифметический сопроцессор в Pentium III по сравнению с Pentium II остался без изменений, что и подтверждает данный тест. Прирост производительности идет только за счет дополнительных мегагерц.

Теперь посмотрим, как ведет себя в неоптимизированных игровых приложениях трехмерная графика.


Тест проводился с помощью демо massive1. Как и следовало ожидать, ничего особенного. Без оптимизации и использования новых инструкций игра практически не ускорилась.


Это уже интереснее. Хоть мы и запускали этот тест под DirectX 6.1, оптимизированным под SSE, никакого прироста нет. Объясняется это просто - 3Dmark99, как и подавляющее большинство современных игр, не использует ту часть DirectX, в которой могут быть применены новые SIMD инструкции. Подобную ситуацию мы уже наблюдали с 3DNow! и процессором AMD K6-2. Мало договориться с Microsoft о поддержке новых инструкций в DirectX - надо еще либо убедить разработчиков использовать новые возможности в своих программах, либо заставить их задействовать DirectX Lighting and Transformation Engine. Однако весь предыдущий опыт показывает, что разработчики программ более охотно пишут собственные алгоритмы расчета освещенности и трансформации, чем используют для этой цели DirectX. Причина такого подхода кроется в невысокой скорости и небольших возможностях Lighting and Transformation Engine. В результате на данный момент он задействован только в 3D WinBench. :)

Однако несмотря на то, что в тестах, приведенных выше, мы не видели практически никаких преимуществ Pentium III перед предшественниками, это, отнюдь, не означает, что процессор не удался. Почему - станет понятно ниже. Выпуская Pentium III, Intel и не обещал, что тот же Word начнет работать быстрее, он просто открыл новые возможности для разработчиков.
SECC2

Прежде чем перейти к центровой части данного изложения, обзору SSE, стоит посмотреть на что, в первую очередь, обращает внимание любой человек, берущий в руки Pentium III.

Да, это новый процессорный картридж - SECC2.

Несколько лет назад, переходя к выпуску Pentium II, Intel надеялся разделаться с конкурентами, поместив свой процессор в новую упаковку и не лицензировав ее никому. Однако жизнь сложилась по-другому. Результатом этого шага явилось то, что рынок дешевых систем корпорацией был потерян, и сейчас ей приходится срочно наверстывать упущенное. В том числе и изготовление процессорного картриджа вносит свой вклад в итоговую стоимость процессора. Именно поэтому для удешевления собственной продукции на изделиях, ориентированных на нижний сегмент рынка, таких как Celeron, картридж отсутствует напрочь.

SECC2 - некое промежуточное звено между стандартным SECC и его полным отсутствием. SECC2-картридж лишился своей передней половинки, той самой, на которую навешивается кулер. В этом есть и еще один плюс. Теперь радиатор, обдуваемый вентилятором, соприкасается не с железной пластиной, прижатой к ядру, а непосредственно с микросхемой. Таким образом, отвод тепла в SECC2 поставлен лучше. Косвенным доказательством этого явился тот факт, что предоставленный нам образец Pentium III оборудован только игольчатым радиатором без вентилятора. При этом он нормально функционировал не только на штатной частоте 500 МГц, но и будучи разогнанным до 560 МГц (5х112 МГц).

Но и это еще не все. Вместо старого покрытия кристалла Plastic Land Grid Array (PLGA) теперь используется новый органический сплав на основе меди - Organic Land Grid Array (OLGA). Таким образом, и само ядро нового процессора обрело другое лицо. Результатом этого явилось его уменьшение, с одной стороны, и улучшение охлаждения за счет лучшей теплопроводности, с другой. Так выглядит теперь Pentium III без корпуса:


Номер

Вторым нововведением, наделавшим, наверное, больше всего шума, явилось присваивание каждому процессору Pentium III серийного номера - уникального идентификатора. Замысел был неплох. Любой процессор можно было однозначно идентифицировать, а следовательно, легко решить проблемы с аутентификацией пользователей и защитой процессоров от разгона. Благодаря специальному программному обеспечению этот номер также мог бы быть получен удаленно, через интернет.


Именно здесь маркетинг и споткнулся. Как только было сказано, что номер можно получить удаленно, пресса тут же нарисовала мрачную картину отслеживания пользователей через интернет, и покатилась волна недовольства.

Однако паниковать рано. Если посмотреть объективно, то для того, чтобы кто-то смог через сеть посмотреть номер процессора, необходимо:
чтобы он был разрешен. Intel предлагает специальную утилиту для блокировки номера. Кроме того, все новые версии BIOS, поддерживающие Pentium III, также позволяют блокировать этот номер через Setup;
чтобы на компьютере пользователя была запущена специальная программа, передающая этот номер. Предполагается, что кто-то, например web-сайт, должен запустить на пользовательском ПК эту программу.

Так что я не склонен расценивать введение серийного номера, как попытку Intel вторгнуться в нашу частную жизнь. Более того, уже почти 10 лет, как все выпускаемые жесткие диски имеют серийные номера. И их также можно узнать. А это почему-то не вызывает ни у кого никаких вопросов.

Так что введение номера - скорее все-таки положительный, чем отрицательный, шаг.
SSE

Теперь о самом главном. О том, что раньше называлось MMX2, потом - KNI, а сейчас называется SSE (Streaming SIMD Extensions). В Pentium III реализовано 70 новых SIMD-инструкций, оперирующих со специальными 128-битными регистрами XMM0-XMM7. Каждый из этих регистров хранит четыре вещественных числа одинарной точности. Таким образом, выполняя операцию над двумя регистрами, SSE фактически оперирует четырьмя парами чисел. То есть благодаря этому процессор может выполнять до 4-х операций одновременно. Собственно, SIMD и расшифровывается как Single Instruction Multiply Data (одна инструкция - много данных).

Однако для выполнения четырех операций "одним махом" разработчик программы должен использовать специальные команды, а также позаботиться о помещении и извлечении данных из четырехместных регистров, поэтому для использования всех вычислительных мощностей Pentium III необходима целенаправленная оптимизация.

То есть вместе с Pentium III, мы получили еще один блок, подобный MMX, только оперирующий с вещественными числами. Это нововведение может оказаться очень полезным в широком ряде приложений:
трехмерная графика и моделирование, расчет освещенности c использованием вычислений с плавающей запятой;
обработка сигналов и моделирование процессов с широким диапазоном изменения параметров (вычисления с плавающей запятой);
генерация трехмерных изображений в программах реального времени, не использующих целочисленный код;
алгоритмы кодирования и декодирования видеосигнала, обрабатывающие данные блоками;
численные алгоритмы фильтрации, работающие с потоками данных.

Однако почему же Intel назвал процессор новым именем, отказавшись от Pentium II SSE (по аналогии с Pentium MMX)? Неужели производитель видит в SSE качественный шаг? Думается, нет. Дело тут в маркетинге. Приписав к названию аббревиатуру, Intel открыто показал бы, что SSE - главное нововведение в их процессоре. И тогда, вслед за ними, все конкуренты также смогли бы объявить о поддержке SSE - основное маркетинговое преимущество было бы утеряно. Так именно и произошло с ММХ. Потому Pentium II SSE называется Pentium III - теперь конкурентам придется говорить о "совместимости", что, по сути, для них более унизительно. Помните, как подозрительно изменилась цифра 3 на III в названии AMD K6-III? ;)

Теперь посмотрим, что же дают новые SIMD-инструкции приложениям, оптимизированным под них. Учтя печальный опыт MMX, когда новые команды появились без соответствующей поддержки со стороны софтверных девелоперов (что привело, в конце концов, к своеобразному бойкоту новых инструкций), Intel на этот раз, задолго до официального выхода нового процессора, разослал программистам опытные экземпляры процессора для оптимизации. В итоге, мы уже сейчас имеем некоторое количество приложений, оптимизированных под SSE.


В этом тесте выполняется стандартная процедура компрессии в MPEG-1, воспроизведение файла этого формата, обработка изображения - поворот, слияние двух изображений и цветоделение, а также обработка звука. Выполнение всех этих задач может быть оптимизировано для SSE, результат этой оптимизации мы видим на диаграмме - прирост относительно Pentium II составляет порядка 40-50%.

Теперь - о 3D-графике и играх. Здесь разговор об оптимизации должен быть отдельный. Дело в том, что оптимизировать 3D-игру под SIMD-инструкции можно тремя путями:
оптимизацией на уровне видеодрайверов;
оптимизацией на уровне DirectX. При этом предполагается, что приложение должно использовать оптимизированные функции DirectX;
оптимизацией самого приложения.

Что касается оптимизации драйверов, то уже практически все производители видеокарт объявили о своем намерении выпустить такие драйвера. Некоторые, например Nvidia, уже имеют драйвера с поддержкой SSE. Собственно, мы на них и проводили наши тесты. Однако, как видно сейчас по тесту Quake2, и как мы помним по опыту 3DNow!, толка от такой оптимизации нет. Никакого прироста в скорости не видно.

Что касается DirectX, то в версии 6.1 (а значит, и во всех последующих) оптимизация под SSE имеется. Изменение претерпел Lighting and Transformation Engine, то есть набор функций для преобразования 3D-сцены и расчета освещений. Результат от такой оптимизации может быть ощутим, если приложение пользуется этими функциями, а не считает все само. Для оценки прироста производительности от оптимизации DirectX достаточно посмотреть на результаты теста 3D Winbench 99 Lighting and Transformation.


Здесь имеется прирост от использования SSE порядка 80-90%. Это как раз тот максимум, который можно получить при использовании оптимизированного DirectX. Однако эта возможность так и остается теоретической - DirectX Lighting and Transformation Engine, также как как и Retained Mode, практически никакие программы не используют. Причины, как уже отмечалось выше, в низком быстродействии и скудных возможностях. Правда, в DirectX 7.0 ситуация обещает исправится - Microsoft сообщил, что работает над усовершенствованием собственного движка. Таким образом, нигде, кроме как в 3D Winbench, результатов оптимизации DirectX не видно.

Обратимся теперь к оптимизированным программам. Самой известной на данный момент является игра Rage Dispatched, намеченная к выходу во втором квартале 99-го года. Сцены этой игры имеют до 55000 треугольников и несколько источников света. На данный момент такая детализация нигде не используется из-за нехватки вычислительных мощностей современных процессоров. Во время тестирования с процессором Intel Pentium II 450 число fps в разрешении 800х600х16 падало ниже отметки 10fps, и была заметна неравномерность движения. С процессором же Pentium III fps в этом режиме не падает ниже 25. Более подробные результаты приведены ниже:


Как видно, прирост от использования новых SIMD-инструкций составляет почти 50%. То есть при условии грамотной оптимизации под Pentium III игроманы могут получить неплохой прирост. Дело - за разработчиками игр.

Еще одним тестом, в котором используется оптимизация под новый процессор, является новая версия 3Dmark99 MAX.


На этом синтетическом тесте, правда, основанном на реальном движке, прирост от использования SSE составляет 20%. Здесь, также как и в Dispatched, разработчики отказались от применения оптимизированных функций DirectX. Более низкий, чем в Dispatchеd, прирост обусловлен как раз тем, что, наряду с расчетом и отображением 3D-сцен, 3DМark тестирует и включает в итоговый индекс и такие характеристики, как пропускная способность памяти видеокарты, совсем не зависящие от CPU.


Специально для оценки эффективности процессора в 3D-играх, 3Dmark99 MAX предлагает индекс CPU 3DМark, просчитывающий 3D-сцены, но не выводящий их не экран. Таким образом, получается результат, зависящий только от возможностей процессора по обработке 3D-графики и от пропускной способности основной памяти. В данном случае мы видим, что SSE дает 60-70% прирост. Что же, неплохо. Это как раз тот теоретический максимум, который можно получить от использования нового Pentium III в играх. Соответствие полученных результатов результатам 3D Winbench 99 Lighting and Transformation подтверждает их правильность.

Кажется, к этому моменту вы должны обладать практически полной информацией о новом процессоре. Недовольными могут остаться только поклонники AMD. Поэтому для полноты изложения попытаемся затронуть вопрос о сравнении технологий 3DNow! и SSE. Чисто теоретически, SSE оперирует с 128-битными регистрами, 3DNow! - с 64-битными. Это значит, что SSE-конвейер процессора Pentium III за один такт может обработать 4 пары значений, в то время как 3DNow!-конвейер - только 2 пары. Однако в Pentium III - всего один SSE-конвейер, в то время как у K6-2 и K6-3 их два. То есть за один такт оба процессора могут обработать 4 пары вещественных чисел одинарной точности. Но в K6-2 и K6-3 конвейеры устроены таким образом, что они не могут выполнять одинаковые операции одновременно. Хотя, на мой взгляд, это ограничение несущественно.

Таким образом, так как KNI использует восемь 128-битных регистров вместо восьми 64-битных в 3DNow!, у Pentium III получается почти в два раза больше регистров для эффективной оптимизации. И это, скорее всего, единственное значимое преимущество KNI. Однако наличие в два раза больших регистров, это не тоже самое, что наличие в два раза лучше соптимизированного кода. Более чем троекратное превосходство SSE в числе инструкций (70 против 21) также малосущественно - все наиболее значимые для 3D-обработки операции 3DNow! выполняет в SIMD-режиме.

Резюме такое: разобраться, что лучше, исходя из теоретических соображений, трудно, так как возможности примерно одинаковы. Тем более, нет информации о времени, затрачиваемом процессорами на различные команды. Так что, перейдем к тестам. Процессор AMD K6-2 тестировался в аналогичной конфигурации на системной плате Chaintech 5AGM2.


В целом, видно значительное отставание AMD K6-2, однако, что касается прироста от применения SIMD-команд, то тут не все так однозначно.


"Мал, да удал!" - только и остается сказать в отношении 3DNow!. Несмотря на все "но", на 64-битные регистры и на меньшее количество команд, 3DNow! неожиданно дает больший эффект при геометрической обработке и расчете освещенности. Причиной этого, по словам разработчиков программ, является то, что 3DNow! предоставляет большую гибкость при работе с небольшими объемами данных. Все это касается лишь программирования игр. В других, неигровых приложениях, соотношение обрабатываемых данных может быть совершенно иным и расклад получится совсем не таким. И хотя полученный результат верен только в предположении, что 3DMark99 MAX оптимизирован под оба набора инструкций одинаково хорошо, "намухлевать" двухкратное преимущество 3DNow! программисты FutureMark вряд ли осмелились бы. Потому, скорее всего, результат справедливый, по крайней мере качественно и для игр. Но пока у процессоров AMD не будет конвейерного FPU (а в K7 он, вроде, обещается), говорить об их превосходстве в играх просто смешно. Это, скорее всего, является еще одной причиной такого превосходства 3DNow!, во многом заменяющего медлительный арифметический сопроцессор. Разработчики стараются переложить часть работы сопроцессора на 3DNow!. В Pentium III таких проблем нет, каждый процессорный блок занят своим делом и прирост от SSE в чистом виде меньше. Так что вся надежда на то, что AMD K7, в котором AMD обещал-таки переработать FPU, все-таки станет объединением всех передовых микропроцессорных технологий.
Выводы

Итак, подведем итог. Intel Pentium III 500 - это более быстрый (на 50 МГц) Pentium II с дополнительными инструкциями, которые сейчас практически нигде не используются. Хотя эти инструкции и имеют громадный потенциал (прирост в оптимизированных приложениях до 80%), отдавать сейчас $500-700 за это абсолютно бессмысленно. Конечно, ожидать, что SSE не приживется, глупо: эти инструкции действительно облегчают жизнь разработчикам. Но к моменту их широкого распространения на Pentium III не только упадет цена, но и, возможно, уже выйдет Coppermine. А этот новый процессор, поддерживающий SSE и работающий на частоте шины 133 МГц, имеет интегрированный в ядро кэш размером 256Кбайт, который работает с частотой процессора. На мой взгляд, гораздо более выгодное приобретение.
*AMD OverClan*
Милосердие шушпанчиков не знает пощады (с)"Шушпанишады".
Как леший, сижу на Пеньке.
Целерон: мал проц, да шустр и беспощаден.
Шушпасен шушпанчик, шуШтро шушпальцами шушпающий (с)"Шушпанишады".
Если шушпанчика назвать модератором, он не обидится, в отличие от модератора, которого назвали шушпанчиком (с) Celeron.
За Российский Крым!
Ответить

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и 0 гостей